Legendre Tensor Decomposition
نویسندگان
چکیده
We present a novel nonnegative tensor decomposition method, called Legendre decomposition, which factorizes an input tensor into a multiplicative combination of parameters. Thanks to the well-developed theory of information geometry, the reconstructed tensor is unique and alwaysminimizes the KL divergence from an input tensor. We empirically show that Legendre decomposition can more accurately reconstruct tensors than nonnegative CP and Tucker decompositions.
منابع مشابه
A simple form of MT impedance tensor analysis to simplify its decomposition to remove the effects of near surface small-scale 3-D conductivity structures
Magnetotelluric (MT) is a natural electromagnetic (EM) technique which is used for geothermal, petroleum, geotechnical, groundwater and mineral exploration. MT is also routinely used for mapping of deep subsurface structures. In this method, the measured regional complex impedance tensor (Z) is substantially distorted by any topographical feature or small-scale near-surface, three-dimensional (...
متن کاملTraceless Symmetric Tensor Approach to Legendre Polynomials and Spherical Harmonics
In these notes I will describe the separation of variable technique for solving Laplace’s equation, using spherical polar coordinates. The solutions will involve Legendre polynomials for cases with azimuthal symmetry, and more generally they will involve spherical harmonics. I will construct these solutions using traceless symmetric tensors, but in Lecture Notes 8 I describe how the solutions i...
متن کاملKernels of Spherical Harmonics and Spherical Frames
Our concern is with the construction of a frame in L 2 (S) consisting of smooth functions based on kernels of spherical harmonics. The corresponding decomposition and reconstruction algorithms utilize discrete spherical Fourier transforms. Numerical examples connrm the theoretical expectations. x1. Introduction Traditionally, wavelets were tailored to problems on the Euclidean space IR d. Howev...
متن کاملChebyshev-Legendre Spectral Domain Decomposition Method for Two-Dimensional Vorticity Equations
We extend the Chebyshev-Legendre spectral method to multi-domain case for solving the two-dimensional vorticity equations. The schemes are formulated in Legendre-Galerkinmethod while the nonlinear term is collocated at Chebyshev-Gauss collocation points. We introduce proper basis functions in order that the matrix of algebraic system is sparse. The algorithm can be implemented efficiently and i...
متن کاملThe Sparse Grid Interpolant
Smolyak’s sparse grid construction is commonly used in a setting involving quadrature of a function of a multidimensional argument over a product region. However, the method can be applied in a straightforward way to the interpolation problem as well. In this discussion, we outline a procedure that begins with a family of interpolants defined on a family of nested tensor product grids, and demo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.04502 شماره
صفحات -
تاریخ انتشار 2018